Data Scientist Role Play: Profiling and Analyzing the Yelp Dataset Coursera Worksheet

This is a 2-part assignment. In the first part, you are asked a series of questions that will help you profile and understand the data just like a data scientist would. For this first part of the assignment, you will be assessed both on the correctness of your findings, as well as the code you used to arrive at your answer. You will be graded on how easy your code is to read, so remember to use proper formatting and comments where necessary.

In the second part of the assignment, you are asked to come up with your own inferences and analysis of the data for a particular research question you want to answer. You will be required to prepare the dataset for the analysis you choose to do. As with the first part, you will be graded, in part, on how easy your code is to read, so use proper formatting and comments to illustrate and communicate your intent as required.

For both parts of this assignment, use this "worksheet." It provides all the questions you are being asked, and your job will be to transfer your answers and SQL coding where indicated into this worksheet so that your peers can review your work. You should be able to use any Text Editor (Windows Notepad, Apple TextEdit, Notepad ++, Sublime Text, etc.) to copy and paste your answers. If you are going to use Word or some other page layout application, just be careful to make sure your answers and code are lined appropriately.
In this case, you may want to save as a PDF to ensure your formatting remains intact for you reviewer.

Part 1: Yelp Dataset Profiling and Understanding

1. Profile the data by finding the total number of records for each of the tables below:

i. Attribute table = 10000
 ii. Business table = 10000
 iii. Category table = 10000
 iv. Checkin table = 10000
 v. elite_years table = 10000
 vi. friend table = 10000
 vii. hours table = 10000
 viii. photo table = 10000
 ix. review table = 10000
 x. tip table = 10000
xi. user table = 10000

***********SQL CODE**********
SELECT COUNT(*)
FROM table

2. Find the total distinct records by either the foreign key or primary key for each table. If two foreign keys are listed in the table, please specify which foreign key.

i. Business = id: 10000
ii. Hours = business_id: 1562
iii. Category = business_id: 2643
iv. Attribute = business_id: 1115
v. Review = id: 10000, business_id: 8090, user_id: 9581
vi. Checkin = business_id: 493
vii. Photo = id: 10000, photo: 6493
viii. Tip = user_id: 537, business_id: 3979
ix. User = id: 10000
x. Friend = user_id: 11
xi. Elite_years = user_id: 2780

Note: Primary Keys are denoted in the ER-Diagram with a yellow key icon.

***********SQL CODE**********
SELECT COUNT(DISTINCT Keys)
FROM table

3. Are there any columns with null values in the Users table? Indicate "yes," or "no."

Answer: no

SQL code used to arrive at answer:
SELECT COUNT(*)
FROM user
WHERE id IS NULL
OR name IS NULL
OR review_count IS NULL
OR yelping_since IS NULL
OR useful IS NULL
OR funny IS NULL
OR cool IS NULL
OR fans IS NULL
OR average_stars IS NULL
OR compliment_hot IS NULL
OR compliment_more IS NULL
OR compliment_profile IS NULL
OR compliment_cute IS NULL
OR compliment_list IS NULL
OR compliment_note IS NULL
OR compliment_plain IS NULL
OR compliment_cool IS NULL
OR compliment_funny IS NULL
OR compliment_writer IS NULL
OR compliment_photos IS NULL

4. For each table and column listed below, display the smallest (minimum), largest (maximum), and average (mean) value for the following fields:

 i. Table: Review, Column: Stars

 min: 1 max: 5 avg: 3.7082

 ii. Table: Business, Column: Stars

 min: 1.0 max: 5.0 avg: 3.6549

 iii. Table: Tip, Column: Likes

 min: 0 max: 2 avg: 0.0144

 iv. Table: Checkin, Column: Count

 min: 1 max: 53 avg: 1.9414

 v. Table: User, Column: Review_count

 min: 0 max: 2000 avg: 24.2995

***********SQL CODE***********
SELECT MIN(Column),MAX(Column),AVG(Column)
FROM table

5. List the cities with the most reviews in descending order:

SQL code used to arrive at answer:

```sql
SELECT city, SUM(review_count) AS NUM
FROM business
GROUP BY city
ORDER BY NUM DESC
```

Copy and Paste the Result Below:

<table>
<thead>
<tr>
<th>city</th>
<th>NUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Las Vegas</td>
<td>82854</td>
</tr>
<tr>
<td>Phoenix</td>
<td>34503</td>
</tr>
<tr>
<td>Toronto</td>
<td>24113</td>
</tr>
<tr>
<td>Scottsdale</td>
<td>20614</td>
</tr>
<tr>
<td>Charlotte</td>
<td>12523</td>
</tr>
<tr>
<td>Henderson</td>
<td>10871</td>
</tr>
<tr>
<td>Tempe</td>
<td>10504</td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>9798</td>
</tr>
<tr>
<td>Montréal</td>
<td>9448</td>
</tr>
<tr>
<td>Chandler</td>
<td>8112</td>
</tr>
<tr>
<td>Mesa</td>
<td>6875</td>
</tr>
<tr>
<td>Gilbert</td>
<td>6380</td>
</tr>
<tr>
<td>Cleveland</td>
<td>5593</td>
</tr>
<tr>
<td>Madison</td>
<td>5265</td>
</tr>
<tr>
<td>Glendale</td>
<td>4406</td>
</tr>
<tr>
<td>Mississauga</td>
<td>3814</td>
</tr>
<tr>
<td>Edinburgh</td>
<td>2792</td>
</tr>
<tr>
<td>Peoria</td>
<td>2624</td>
</tr>
<tr>
<td>North Las Vegas</td>
<td>2438</td>
</tr>
<tr>
<td>Markham</td>
<td>2352</td>
</tr>
<tr>
<td>Champaign</td>
<td>2029</td>
</tr>
<tr>
<td>Stuttgart</td>
<td>1849</td>
</tr>
<tr>
<td>Surprise</td>
<td>1520</td>
</tr>
<tr>
<td>Lakewood</td>
<td>1465</td>
</tr>
<tr>
<td>Goodyear</td>
<td>1155</td>
</tr>
</tbody>
</table>
6. Find the distribution of star ratings to the business in the following cities:

i. Avon

SQL code used to arrive at answer:
```sql
SELECT SUM(review_count) AS Numbers, stars
FROM business
WHERE city == "Avon"
GROUP BY stars
```

Copy and Paste the Resulting Table Below (2 columns – star rating and count):

<table>
<thead>
<tr>
<th>Numbers</th>
<th>stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>2.5</td>
</tr>
<tr>
<td>88</td>
<td>3.5</td>
</tr>
<tr>
<td>21</td>
<td>4.0</td>
</tr>
<tr>
<td>31</td>
<td>4.5</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
</tr>
</tbody>
</table>

ii. Beachwood

SQL code used to arrive at answer:
```sql
SELECT SUM(review_count) AS Numbers, stars
FROM business
WHERE city == "Beachwood"
GROUP BY stars
```

Copy and Paste the Resulting Table Below (2 columns – star rating and count):

<table>
<thead>
<tr>
<th>Numbers</th>
<th>stars</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Find the top 3 users based on their total number of reviews:

SQL code used to arrive at answer:
```sql
SELECT review_count, name
FROM user
ORDER BY review_count DESC
LIMIT 3
```

Copy and Paste the Result Below:
```
+--------------+--------+
| review_count | name   |
+--------------+--------+
| 2000         | Gerald |
| 1629         | Sara   |
| 1339         | Yuri   |
```

8. Does posing more reviews correlate with more fans?

Please explain your findings and interpretation of the results:

Not necessarily correlated. Amy, who has the most fans, only has 609 reviews. Yuri has only 76 fans, but has the third most reviews. Some other factors should also be considered.

**********SQL CODE**********
```sql
SELECT name, review_count, fans
FROM user
ORDER BY fans DESC
```
Are there more reviews with the word "love" or with the word "hate" in them?

Answer: Yes. There are 1780 reviews with “love” and 232 reviews with “hate”
SQL code used to arrive at answer:
```sql
SELECT COUNT(*)
FROM review
WHERE text LIKE "%love%"
```

```sql
SELECT COUNT(*)
FROM review
WHERE text LIKE "%hate%"
```

10. Find the top 10 users with the most fans:

SQL code used to arrive at answer:
```sql
SELECT name,fans
FROM user
ORDER BY fans DESC
LIMIT 10
```

Copy and Paste the Result Below:

```
+-----------+------+
| name      | fans |
+-----------+------+
| Amy       |  503 |
| Mimi      |  497 |
| Harald    |  311 |
| Gerald    |  253 |
| Christine |  173 |
| Lisa      |  159 |
| Cat       |  133 |
| William   |  126 |
| Fran      |  124 |
| Lissa     |  120 |
+-----------+------+
```

11. Is there a strong relationship (or correlation) between having a high number of fans and being listed as "useful" or "funny"? Out of the top 10 users with the highest number of fans, what percent are also listed as “useful” or “funny”?

Key:
0% - 25% - Low relationship
26% - 75% - Medium relationship
76% - 100% - Strong relationship

SQL code used to arrive at answer:

```sql
SELECT name, fans, useful, funny
FROM user
ORDER BY fans DESC
LIMIT 10
```

Copy and Paste the Result Below:

+-----------+------+--------+--------+
<table>
<thead>
<tr>
<th>name</th>
<th>fans</th>
<th>useful</th>
<th>funny</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>503</td>
<td>3226</td>
<td>2554</td>
</tr>
<tr>
<td>Mimi</td>
<td>497</td>
<td>257</td>
<td>138</td>
</tr>
<tr>
<td>Harald</td>
<td>311</td>
<td>122921</td>
<td>122419</td>
</tr>
<tr>
<td>Gerald</td>
<td>253</td>
<td>17524</td>
<td>2324</td>
</tr>
<tr>
<td>Christine</td>
<td>173</td>
<td>4834</td>
<td>6646</td>
</tr>
<tr>
<td>Lisa</td>
<td>159</td>
<td>48</td>
<td>13</td>
</tr>
<tr>
<td>Cat</td>
<td>133</td>
<td>1062</td>
<td>672</td>
</tr>
<tr>
<td>William</td>
<td>126</td>
<td>9363</td>
<td>9361</td>
</tr>
<tr>
<td>Fran</td>
<td>124</td>
<td>9851</td>
<td>7606</td>
</tr>
<tr>
<td>Lissa</td>
<td>120</td>
<td>455</td>
<td>150</td>
</tr>
</tbody>
</table>
```

Please explain your findings and interpretation of the results:

Out of the top 10 users with the highest number of fans, 100% are also listed as either “useful” or “funny”. So there is a strong correlation between having a high number of fans and being listed as “useful” or “funny”.

Part 2: Inferences and Analysis

1. Pick one city and category of your choice and group the businesses in that city or category by their overall star rating. Compare the businesses with 2-3 stars to the businesses with 4-5 stars and answer the following questions. Include your
i. Do the two groups you chose to analyze have a different distribution of hours?

I picked Toronto and Food for this question. Yes. The restaurants with only 2.5 stars open from 8:00-22:00 on Saturday. The places with higher rating stars open late on Saturday.

The results from SQL is shown below:

```sql
+--------------+---------+----------+-------+
| name | city | category | stars |
|--------------+---------+----------+-------|
| Loblaws | Toronto | Food | 2.5 |
| | | | Saturday |
| | | | 8:00-22:00 |
| Halo Brewery | Toronto | Food | 4.0 |
| | | | Saturday |
| | | | 11:00-21:00 |
| Cabin Fever | Toronto | Food | 4.5 |
| | | | Saturday |
| | | | 16:00-2:00 |
+--------------+---------+----------+-------+
```

ii. Do the two groups you chose to analyze have a different number of reviews?

Yes. The group with 2-3 stars has less review (10) compared with the group with higher rating stars.

```sql
+--------------+---------+----------+-------+--------------+
| name | city | category | stars | review_count |
|--------------+---------+----------+-------|--------------|
| Loblaws | Toronto | Food | 2.5 | 10 |
| | | | Saturday |
| | | | 8:00-22:00 |
| Halo Brewery |Toronto | Food | 4.0 | 15 |
| | | | Saturday |
| | | | 11:00-21:00 |
+--------------+---------+----------+-------+--------------+
```
iii. Are you able to infer anything from the location data provided between these two groups? Explain.

No really. They have different locations.

SQL code used for analysis:
SELECT
business.name
, business.city
, category.category
, business.stars
,hours.hours,
business.review_count,
business.address,
business.postal_code
FROM (business INNER JOIN category ON business.id =
2. Group business based on the ones that are open and the ones that are closed. What differences can you find between the ones that are still open and the ones that are closed? List at least two differences and the SQL code you used to arrive at your answer.

i. Difference 1:
The ones that are still open have more reviews on average than ones that are closed

ii. Difference 2:
There are more business that are still open listed as “useful” or “funny”.

SQL code used for analysis:

```sql
SELECT AVG(b.stars), SUM(b.review_count), AVG(b.review_count), COUNT(r.useful) + COUNT(r.funny), is_open
FROM business b INNER JOIN review r ON b.id = r.id
GROUP BY b.is_open
```

Results:

```
+---------------+---------------------+---------------------+--------------------------------+---------+
| AVG(b.stars) | SUM(b.review_count) | AVG(b.review_count) | COUNT(r.useful)+COUNT(r.funny) | is_open |
| 2.0 | 4 | 4.0 | 2 |
| 2.96153846154 | 504 | 38.7692307692 | 26 |
+---------------+---------------------+---------------------+--------------------------------+---------+
```

3. For this last part of your analysis, you are going to choose the type of analysis you want to conduct on the Yelp dataset and
are going to prepare the data for analysis.

Ideas for analysis include: Parsing out keywords and business attributes for sentiment analysis, clustering businesses to find commonalities or anomalies between them, predicting the overall star rating for a business, predicting the number of fans a user will have, and so on. These are just a few examples to get you started, so feel free to be creative and come up with your own problem you want to solve. Provide answers, in-line, to all of the following:

i. Indicate the type of analysis you chose to do:
   Here I chose to study the preference among different types of food on yelp.

ii. Write 1-2 brief paragraphs on the type of data you will need for your analysis and why you chose that data:
   I will pick several types of food including “Chinese”, “Mexican”, “Korean”, “French”, “Italian”, “Japanese” and “Indian”. Then I will analyze their star ratings and number of reviews so that I can get some insights on which type of food is popular on yelp.

iii. Output of your finished dataset:

```
+----------+----------------------+---------------+
| category | Number_Of_Resturants | AVG(stars) |
| | AVG(review_count) | city |
+----------+----------------------+---------------+
| Korean | 7 | 4.5 |
| | 8.0 | Toronto |
| French | 12 | 4.0 |
| | 135.083333333 | Las Vegas |
| Chinese | 13 | 3.76923076923 |
| | 423.230769231 | Las Vegas |
| Mexican | 28 | 3.625 |
| | 73.0 | Edinburgh |
| Italian | 13 | 3.53846153846 |
| | 78.2307692308 | Montréal |
| Indian | 6 | 3.5 |
| | 32.0 | Aurora |
| Japanese | 20 | 3.475 |
```
iv. Provide the SQL code you used to create your final dataset:

```sql
SELECT c.category, COUNT(b.name) AS Number_Of_Resturants, AVG(stars), AVG(review_count), b.city
FROM (business b INNER JOIN hours h ON b.id = h.business_id)
INNER JOIN category c ON c.business_id = b.id
WHERE c.category IN
GROUP BY c.category
ORDER BY AVG(stars) DESC
```